Equations

Cerisse solves equations in the general form

Ut+Fjxj+Fviscxj=S\frac{\partial \mathbf{U} }{\partial t} + \frac{\partial \mathbf{F}_j }{\partial x_j} + \frac{\partial \mathbf{F}_{visc} }{\partial x_j} = \mathbf{S}

Where U\mathbf{U} is the array in conservative variables

U=[ρρuiEtρY1ρY2...]\mathbf{U} = \begin{bmatrix} \rho \\ \rho u_i \\ E_t \\ \rho Y_1 \\ \rho Y_2 \\ ... \end{bmatrix}

and F\mathbf{F} represent the fluxes of the conserved variables across a surface. For example in x-direction.

Fx=[ρuρu2+pρuvρuwu(Et+p)ρuY1ρuY2...]\mathbf{F}_x = \begin{bmatrix} \rho u \\ \rho u_2 + p \\ \rho u v \\ \rho u w \\ u(E_t + p) \\ \rho u Y_1 \\ \rho u Y_2 \\ ... \end{bmatrix}

These are called the Euler fluxes. If Euler fluxes are the only present, the resultant equations are the Euler Equations.

Fvisc\mathbf{F}_{visc} represents the fluxes due to molecular transport (viscous streess, heat fluxes, mass disffusion, etc). While S\mathbf{S} is a generic source term. While combining these terms appropiately we can build differnt type of equations (check definition in PROB), such as Euler, Navier-Stokes, Reactive Navier-Stokes, etc. The general equations can be seen in DNS .

Finite Volume Method

The expression can be written in divergence form

Ut=(F+Fvisc)+S=F+S\frac{\partial \mathbf{U} }{\partial t} = -\nabla \cdot \left( \mathbf{F} + \mathbf{F}_{visc} \right) + \mathbf{S} = -\nabla \cdot \mathbf{F}^\ast + \mathbf{S}

Integrating over cell and dividing over control volume VijkV_{ijk}

1VijkUtdV=1VijkFdV+1VijkSdV\frac{1}{V_{ijk}} \int \frac{\partial \mathbf{U} }{\partial t} dV = \frac{1}{V_{ijk}} \int -\nabla \cdot \mathbf{F}^\ast \, dV + \frac{1}{V_{ijk}} \int \mathbf{S} dV

Defining the cell-averaged value as

ϕijk=1VijkϕdV\phi_{ijk} = \frac{1}{V_{ijk}} \int \phi dV

and using divergence theorem

Uijkt=1VijkδVFndA+Sijk\frac{\partial \mathbf{U}_{ijk} }{\partial t} = \frac{1}{V_{ijk}} \oint_{\delta V} \mathbf{F}^\ast \cdot \mathbf{n} \, dA + \mathbf{S}_{ijk}

Using polyhedral cells, the following expression follows by summing over the cells faces ()

Uijkt=1Vijkf=1NfacesFfnfAf+Sijk \frac{\partial \mathbf{U}_{ijk} }{\partial t} = \frac{1}{V_{ijk}} \sum_{f=1}^{Nfaces} \mathbf{F}_f^\ast \cdot \mathbf{n}_f \, A_f + \mathbf{S}_{ijk}

The above formulation ensures global conservation as the fluxes of shared faces between two control volumes cancel out.

Last updated